You're viewing legacy docs for V0 SDKs. View the latest V1 Docs →

Self HostingDocker Compose

Docker Compose Deployment

This guide shows how to deploy Hatchet using Docker Compose for a production-ready deployment. If you’d like to get up and running quickly, you can also deploy Hatchet using the hatchet-lite image following the tutorial here: Hatchet Lite Deployment.

Quickstart

Prerequisites

This deployment requires Docker installed locally to work.

Create files

We will be creating 2 files in the root of your repository:

    • docker-compose.yml
    • Caddyfile
docker-compose.yml
version: "3.8"
services:
  postgres:
    image: postgres:15.6
    command: postgres -c 'max_connections=200'
    restart: always
    hostname: "postgres"
    environment:
      - POSTGRES_USER=hatchet
      - POSTGRES_PASSWORD=hatchet
      - POSTGRES_DB=hatchet
    ports:
      - "5435:5432"
    volumes:
      - hatchet_postgres_data:/var/lib/postgresql/data
    healthcheck:
      test: ["CMD-SHELL", "pg_isready -d hatchet -U hatchet"]
      interval: 10s
      timeout: 10s
      retries: 5
      start_period: 10s
  rabbitmq:
    image: "rabbitmq:3-management"
    hostname: "rabbitmq"
    ports:
      - "5673:5672" # RabbitMQ
      - "15673:15672" # Management UI
    environment:
      RABBITMQ_DEFAULT_USER: "user"
      RABBITMQ_DEFAULT_PASS: "password"
    volumes:
      - "hatchet_rabbitmq_data:/var/lib/rabbitmq"
      - "hatchet_rabbitmq.conf:/etc/rabbitmq/rabbitmq.conf" # Configuration file mount
    healthcheck:
      test: ["CMD", "rabbitmqctl", "status"]
      interval: 10s
      timeout: 10s
      retries: 5
  migration:
    image: ghcr.io/hatchet-dev/hatchet/hatchet-migrate:latest
    environment:
      DATABASE_URL: "postgres://hatchet:hatchet@postgres:5432/hatchet"
    depends_on:
      postgres:
        condition: service_healthy
  setup-config:
    image: ghcr.io/hatchet-dev/hatchet/hatchet-admin:latest
    command: /hatchet/hatchet-admin quickstart --skip certs --generated-config-dir /hatchet/config --overwrite=false
    environment:
      DATABASE_URL: "postgres://hatchet:hatchet@postgres:5432/hatchet"
      SERVER_TASKQUEUE_RABBITMQ_URL: amqp://user:password@rabbitmq:5672/
      SERVER_AUTH_COOKIE_DOMAIN: localhost:8080
      SERVER_AUTH_COOKIE_INSECURE: "t"
      SERVER_GRPC_BIND_ADDRESS: "0.0.0.0"
      SERVER_GRPC_INSECURE: "t"
      SERVER_GRPC_BROADCAST_ADDRESS: localhost:7077
    volumes:
      - hatchet_certs:/hatchet/certs
      - hatchet_config:/hatchet/config
    depends_on:
      migration:
        condition: service_completed_successfully
      rabbitmq:
        condition: service_healthy
      postgres:
        condition: service_healthy
  hatchet-engine:
    image: ghcr.io/hatchet-dev/hatchet/hatchet-engine:latest
    command: /hatchet/hatchet-engine --config /hatchet/config
    restart: on-failure
    depends_on:
      setup-config:
        condition: service_completed_successfully
      migration:
        condition: service_completed_successfully
    ports:
      - "7077:7070"
    environment:
      DATABASE_URL: "postgres://hatchet:hatchet@postgres:5432/hatchet"
      SERVER_GRPC_BIND_ADDRESS: "0.0.0.0"
      SERVER_GRPC_INSECURE: "t"
    volumes:
      - hatchet_certs:/hatchet/certs
      - hatchet_config:/hatchet/config
  hatchet-api:
    image: ghcr.io/hatchet-dev/hatchet/hatchet-api:latest
    command: /hatchet/hatchet-api --config /hatchet/config
    restart: on-failure
    depends_on:
      setup-config:
        condition: service_completed_successfully
      migration:
        condition: service_completed_successfully
    environment:
      DATABASE_URL: "postgres://hatchet:hatchet@postgres:5432/hatchet"
    volumes:
      - hatchet_certs:/hatchet/certs
      - hatchet_config:/hatchet/config
  hatchet-frontend:
    image: ghcr.io/hatchet-dev/hatchet/hatchet-frontend:latest
  caddy:
    image: caddy:2.7.6-alpine
    ports:
      - 8080:8080
    volumes:
      - ./Caddyfile:/etc/caddy/Caddyfile
 
volumes:
  hatchet_postgres_data:
  hatchet_rabbitmq_data:
  hatchet_rabbitmq.conf:
  hatchet_config:
  hatchet_certs:
Caddyfile
http://localhost:8080 {
	handle /api/* {
		reverse_proxy hatchet-api:8080
	}

	handle /* {
		reverse_proxy hatchet-frontend:80
	}
}

Get Hatchet up and running

To start the services, run the following command in the root of your repository:

docker compose up

Wait for the hatchet-engine and hatchet-api services to start.

Accessing Hatchet

Once the Hatchet instance is running, you can access the Hatchet UI at http://localhost:8080.

By default, a user is created with the following credentials:

Email: admin@example.com
Password: Admin123!!

Generate a .env file

You can generate a .env file as follows:

cat <<EOF > .env
HATCHET_CLIENT_TOKEN="$(docker compose run --no-deps setup-config /hatchet/hatchet-admin token create --config /hatchet/config --tenant-id 707d0855-80ab-4e1f-a156-f1c4546cbf52 | xargs)"
HATCHET_CLIENT_TLS_STRATEGY=none
EOF
🪓

You can also generate an API token by logging in and navigating to the “General” settings page, clicking on the “API Tokens” tab, and then clicking “Create API Token”.

Run your first worker

Make sure you have the following dependencies installed:

pip install python-dotenv
pip install hatchet-sdk

We are using python-dotenv to load the environment variables from a .env file. This isn’t required, and you can use your own method to load environment variables.

Create a worker.py file with the following contents:

worker.py
from hatchet_sdk import Hatchet
from dotenv import load_dotenv
 
load_dotenv()
 
hatchet = Hatchet(debug=True)
 
@hatchet.workflow(name="first-python-workflow",on_events=["user:create"])
class MyWorkflow:
    @hatchet.step()
    def step1(self, context):
        return {
            "result": "success"
        }
 
if __name__ == "__main__":
    worker = hatchet.worker('first-worker')
    worker.register_workflow(MyWorkflow())
 
    worker.start()

Open a new terminal and start the worker with:

python3 worker.py

Run your first workflow

The worker is now running and listening for steps to execute. You should see your first worker registered in the Workers tab of the Hatchet dashboard:

Quickstart 1

You can now trigger your first workflow by navigating to the Workflows tab, selecting your workflow, and clicking the top right “Trigger workflow” button:

Quickstart 2

That’s it! You’ve successfully deployed Hatchet and run your first workflow.

Connecting to the engine from within Docker

If you’re also running your worker application inside of docker-compose, you should modify the SERVER_GRPC_BROADCAST_ADDRESS environment variable in the setup-config service to use host.docker.internal as the hostname. For example:

SERVER_GRPC_BROADCAST_ADDRESS: "host.docker.internal:7077"

Note: modifying the GRPC broadcast address or server URL will require re-issuing an API token.